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Abstract

The ABC-ring system of brevetoxin-B was stereoselectively synthesized based on the 6-endo-cyclization
of a hydroxy methylepoxide, ring-closing olefin metathesis and SmI2-induced reductive intramolecular
cyclization. © 2000 Elsevier Science Ltd. All rights reserved.
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Brevetoxin-B (BTX-B) (1),1 a potent neurotoxin produced by the red tide organism Gymnodium
breve Davis, has a trans-fused polycyclic ether ring system which contains six-, seven- and
eight-membered ether rings, 23 stereocenters, three carbon�carbon double bonds and two carbonyl
groups. Its unique complex structure and potent biological activity have attracted the attention
of synthetic organic chemists, and the first total synthesis of 1 was accomplished by the Nicolaou
group.2 We have recently been investigating the total synthesis of 1 based on our developed
synthetic methods. Our synthetic strategy toward BTX-B (1) mainly includes four efficient methods
for the stereoselective synthesis of trans-cyclic ethers: (a) the Zn(OAc)2-induced ring-expansion
reaction of cyclic ethers ii having a chloromethanesulfonate (monochlate) as the leaving group,3

(b) the 6-endo-cyclization of styrylepoxide iv with CSA, PPTS, or NaH,4 (c) the SmI2-induced
reductive intramolecular cyclization of cyclic ethers vi having a b-alkoxyacrylate and a carbonyl
group,5 and (d) the 6-endo-cyclization of the methylepoxide viii. In addition to our recently
developed methods (a–c), we included (d) the 6-endo-cyclization of viii as an efficient method
for the stereoselective synthesis of trans-cyclic ethers. The cyclization of the methylepoxide
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of this type would proceed in the 6-endo-mode at the methyl position without any activation.6

This method might also be useful for the synthesis of the B-, G-, and J-ring systems.

We now report the stereoselective synthesis of the ABC-ring system of BTX-B (1) in this
paper, and the synthesis of the EFG- and IJK-ring systems in subsequent papers. Our
stereoselective synthesis of the ABC-ring system features the 6-endo-cyclization of a methylepox-
ide,6 ring-closing olefin metathesis,7 and SmI2-induced reductive intramolecular cyclization,5 for
the construction of the B-, A-, and C-ring systems, respectively.

The epoxy alcohol 2,8 prepared from 2-deoxy-D-ribose, was chosen as the starting material for
the synthesis of the ABC-ring system. Deprotection of the TBS group of 2 followed by the
treatment of the resulting hydroxy methylepoxide with PPTS9 at 0°C effected the 6-endo-cycliza-
tion to give the 2,3-trans-tetrahydropyran 3, corresponding to the B-ring of 1, in 93% yield.
Thus, the 6-endo-cyclization took place at the desired methyl position of the epoxide without
any activation; the cyclization using this type of methylepoxide apparently does not need
activation by a vinyl10 or a styryl group4 next to the epoxide. To construct the dihydropyran ring
as an ideal precursor for the A-ring lactone,2 a ring-closing olefin metathesis7 would be an
efficient protocol. The diol 3 was thus converted into the diene 7 as the substrate for the olefin
metathesis via the allyl ether 5. The acetonide formation of the diol 3 followed by hydrogenoly-
sis of the benzylidene with a catalytic amount of Pd(OH)2 gave the diol 4, which was then
converted into the allyl ether 5 in three steps: (1) selective protection of the primary alcohol as
the TBS ether, (2) allylation of the secondary alcohol and (3) deprotection of the TBS group.
The oxidation of 5 with TPAP11 and NMO followed by the Grignard reaction using MeMgBr
gave the alcohol 6, which was subjected to TPAP oxidation and the Wittig reaction using
Ph3P�CH2 to give the required diene 7. Upon treatment of 7 (20 mM in CH2Cl2) with 0.02
equiv. of Grubbs’ reagent,7 the ring-closing olefin metathesis smoothly proceeded at room
temperature for 3 h to give exclusively the desired dihydropyran 8 in 98% yield. The oxidation
of 8 with PCC in benzene at reflux afforded the a,b-unsaturated d-lactone 9, corresponding to
the AB-ring system of 1 (Scheme 1).

We then examined the stereoselective construction of the C-ring system based on the
SmI2-induced reductive intramolecular cyclization5 (Scheme 2). The removal of the acetonide in
8 with CSA in MeOH and subsequent treatment with triflic anhydride followed by TBSOTf in
the presence of 2,6-lutidine in CH2Cl212 gave the triflate 10, which was treated with NaCN to
give the nitrile 11. After reduction of 11 with DIBAH, the treatment of the resulting aldehyde
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Scheme 1. (a) TBAF, THF, rt; (b) PPTS, CH2Cl2, 0°C (93% from 2); (c) Me2C(OMe)2, CSA, DMF, rt (94%); (d) H2,
Pd(OH)2, EtOAc, rt (99%); (e) TBSCl, pyridine, rt (93%); (f) allyl bromide, NaH, benzene, reflux (96%); (g) TBAF,
THF, rt (95%); (h) TPAP, NMO, MS-4A, CH2Cl2, rt (86%); (i) MeMgBr, THF, rt (90%); (j) TPAP, NMO, MS-4A,
CH2Cl2, rt (88%); (k) Ph3P+MeBr−, NaHMDS, THF, 0°C (96%); (l) (PCy3)2Cl2Ru�CHPh, CH2Cl2, rt (98%); (m)
PCC, benzene, reflux (53%)

with 1,3-propanedithiol in the presence of BF3·Et2O in CH2Cl2 simultaneously allowed the
thioacetalization and desilylation to give the thioacetal 12. The hetero-Michael addition of 12
with ethyl propiolate in the presence of N-methylmorpholine followed by dethioacetalization
with MeI13 gave the aldehyde 13. Upon treatment of 13 with 2.2 equiv. of SmI2 in the presence
of 2.2 equiv. of MeOH in THF, a radical-mediated reductive cyclization smoothly proceeded at
0°C for 1 h to exclusively give trans-fused tricyclic tetrahydropyran 14 in 91% yield, correspond-
ing to the ABC-ring system of 1. The stereostructure of 14 was confirmed by the NMR analysis
(NOE and HMBC).

Scheme 2. (a) CSA, MeOH, rt (92%); (b) Tf2O, 2,6-lutidine, CH2Cl2, −78°C, then TBSOTf, −78�0°C (98%); (c)
NaCN, MS-4A, DMSO, 80°C (61%); (d) DIBAH, CH2Cl2, −78°C; (e) BF3·Et2O, HS(CH2)3SH, CH2Cl2, −78�0°C;
(f) TBAF, THF, rt (63% from 11); (g) ethyl propiolate, N-methylmorpholine, CH2Cl2, rt (70%); (h) MeI, aq. MeCN,
rt (100%); (i) 2.2 equiv. of SmI2, 2.2 equiv. of MeOH, THF, 0°C (91%)
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In summary, the ABC-ring system of BTX-B (1) was efficiently synthesized with complete
stereoselection based on the 6-endo-cyclization of the methylepoxide, the ring-closing olefin
metathesis, and the SmI2-induced cyclization.

Acknowledgements

This work was supported in part by Special Project Funding for Basic Science (Multibio-
probe) from RIKEN. The authors thank Dr. H. Koshino for the NMR spectral measurements
and Ms. K. Harata for the mass spectral measurements.

References

1. Lin, Y.-Y.; Risk, M.; Ray, S. M.; Van Engen, D.; Clardy, J.; Golik, J.; James, J. C.; Nakanishi, K. J. Am. Chem.
Soc. 1981, 103, 6773.

2. (a) Nicolaou, K. C.; Theodorakis, E. A.; Rutjes, F. P. J. T.; Sato, M.; Tiebes, J.; Xiao, X.-Y.; Hwang, C.-K.;
Duggan, M. E.; Yang, Z.; Couladouros, E. A.; Sato, F.; Shin, J.; He, H.-M.; Bleckman, T. J. Am. Chem. Soc.
1995, 117, 10239. (b) Nicolaou, K. C.; Rutjes, F. P. J. T.; Theodorakis, E. A.; Tiebes, J.; Sato, M.; Untersteller,
E. J. Am. Chem. Soc. 1995, 117, 10252.

3. (a) Hori, N.; Nagasawa, K.; Shimizu, T.; Nakata, T. Tetrahedron Lett. 1999, 40, 2145. (b) Nakata, T.; Nomura,
S.; Matsukura, H. Tetrahedron Lett. 1996, 37, 213.

4. (a) Matsukura, H.; Morimoto, M.; Koshino, H.; Nakata, T. Tetrahedron Lett. 1997, 38, 5545. (b) Matsukura, H.;
Morimoto, M.; Nakata, T. Chem. Lett. 1996, 487.

5. (a) Hori, N.; Matsukura, H.; Matsuo, G.; Nakata, T. Tetrahedron Lett. 1999, 40, 2811. (b) Hori, N.; Matsukura,
H.; Nakata, T. Org. Lett. 1999, 1, 1099. (c) Matsuo, G.; Hori, N.; Nakata, T. Tetrahedron Lett. 1999, 40, 8859.

6. Corey, E. J.; Ha, D.-C. Tetrahedron Lett. 1988, 29, 3171.
7. For a review, see: Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413.
8. Nicolaou, K. C.; Nugiel, D. A.; Couladouros, E.; Hwang, C.-K. Tetrahedron 1990, 46, 4517.
9. Miyashita, M.; Yoshikoshi, A.; Grieco, P. A. J. Org. Chem. 1977, 42, 3772.

10. (a) Nicolaou, K. C.; Duggan, M. E.; Hwang, C.-K.; Somers, P. K. J. Chem. Soc., Chem. Commun. 1985, 1359.
(b) Nicolaou, K. C.; Prasad, C. V. C.; Somers, P. K.; Hwang, C.-K. J. Am. Chem. Soc. 1989, 111, 5330. (c)
Nicolaou, K. C.; Prasad, C. V. C.; Somers, P. K.; Hwang, C.-K. J. Am. Chem. Soc. 1989, 111, 5335.

11. For a review, see: Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. Synthesis 1994, 639.
12. Mori, Y.; Yaegashi, K.; Furukawa, H. J. Am. Chem. Soc. 1996, 118, 8158.
13. Takano, S.; Hatakeyama, S.; Ogasawara, K. J. Chem. Soc., Chem. Commun. 1977, 68.

.


